Manifold Relevance Determination: Learning the Latent Space of Robotics

نویسنده

  • Pete Trautman
چکیده

In this article we present the basics of manifold relevance determination (MRD) as introduced in [Damianou et al., 2012], and some applications where the technology might be of particular use. Section 1 acts as a short tutorial of the ideas developed in [Damianou et al., 2012], while Section 2 presents possible applications in sensor fusion, multi-agent SLAM, and “humanappropriate” robot movement (e.g. legibility and predictability [Dragan et al., 2013]). In particular, we show how MRD can be used to construct the underlying models in a data driven manner, rather than directly leveraging first principles theories (e.g., physics, psychology) as is commonly the case for sensor fusion, SLAM, and human robot interaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relevance Determination for Learning Vector Quantization using the Fisher Criterion Score

Two new feature relevance determination algorithms are proposed for learning vector quantization. The algorithms exploit the positioning of the prototype vectors in the input feature space to estimate Fisher criterion scores for the input dimensions during training. These scores are used to form online estimates of weighting factors for an adaptive metric that accounts for dimensional relevance...

متن کامل

Probabilistic models in noisy environments : and their application to a visual prosthesis for the blind/

In recent years, probabilistic models have become fundamental techniques in machine learning. They are successfully applied in various engineering problems, such as robotics, biometrics, brain-computer interfaces or artificial vision, and will gain in importance in the near future. This work deals with the difficult, but common situation where the data is, either very noisy, or scarce compared ...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

Manifold Relevance Determination

In this paper we present a fully Bayesian latent variable model which exploits conditional nonlinear (in)-dependence structures to learn an efficient latent representation. The latent space is factorized to represent shared and private information from multiple views of the data. In contrast to previous approaches, we introduce a relaxation to the discrete segmentation and allow for a “softly” ...

متن کامل

آموزش منیفلد با استفاده از تشکیل گراف منیفلدِ مبتنی بر بازنمایی تنک

In this paper, a sparse representation based manifold learning method is proposed. The construction of the graph manifold in high dimensional space is the most important step of the manifold learning methods that is divided into local and gobal groups. The proposed graph manifold extracts local and global features, simultanstly. After construction the sparse representation based graph manifold,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1705.03158  شماره 

صفحات  -

تاریخ انتشار 2017